PS 2010: Introduction

Qing Chang

Department of Political Science University of Pittsburgh

Fall 2023

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Today's Agenda

- Welcome
- Motivation
- · Go through the syllabus and course overview

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A little bit about myself...

- Name: Qing Chang
- Fields: comparative politics and political methodology
- Research:
 - political economy of development in developing countries

- causal inference + machine learning
- Fun things about me.

What this course about

- Political science: study of government, public policies, political process, and political behavior
- Topics such as political economy, war and conflict, voting, and institutions
- Political Methodology: **both** qualitative and quantitative tools to examine the political sphere

Why Study Quantitative Methods?

- Systematically collect and analyze data to test theories and hypotheses
- Brings precision, objectivity, and rigor to political science research (replicable)
- Multi-mode research: complement qualitative approaches like interviews and comparative case study

Why You Need to Learn?

- It is a standard now
- Allows you to read and critically evaluate academic literature
- Signal of your capability
- Quantitative chops can give you an edge, e.g applying for grants https://www.nsf.gov/funding/programs.jsp?org=SBE

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

More opportunities

This Course

- Foundations of Quantitative Methods
- An introductory level course covers mathematical and key statistical concepts
 - If $A \Rightarrow B$
 - How to test? Quantify uncertainty and generalize to others

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Helps build foundations for advanced study

Structure of the class

Our class has three modules:

- Mathematics:
 - calculus, linear algebra
- Probability theory:
 - probability, random variable
- Statistical inference:
 - hypothesis testing, OLS
- In additional to theory, I also introduce you:
 - R and Rstudio
 - Data cleaning, transformation, visualization, and analysis

Example 1: Pierskalla, Schultz, Wibbels, et al. 2017

		_
(1)	(2)	
log(Lights)	log(Lights)	
(2.062***)	(1.956***)	_
(0.570)	(0.346)	Т
0.0420	-0.146	aı
(0.138)	(0.102)	
0.279***	0.268***	
(0.0765)	(0.0213)	
0.0144	-	
(0.0111)	-	
0.0475	-0.0238	
(0.371)	(0.206)	
-3.134***	-2.177***	
(0.850)	(0.263)	
6591	6591	_
0.472	0.433	
120.9	87.55	
	$\begin{array}{c} (1)\\ log(Lights)\\ \hline 2.062^{**}\\ (0.570)\\ \hline 0.0420\\ (0.138)\\ \hline 0.279^{***}\\ (0.0765)\\ \hline 0.0144\\ (0.0111)\\ \hline 0.0475\\ (0.371)\\ -3.134^{***}\\ (0.850)\\ \hline 6591\\ 0.472\\ 120.9 \end{array}$	$\begin{array}{c cccc} (1) & (2) & \\ log(Lights) & log(Lights) & \\ \hline 2.062^{***} & (1.956^{***}) & \\ \hline (0.570) & (0.346) & \\ \hline 0.0420 & -0.146 & \\ \hline (0.138) & (0.102) & \\ \hline 0.279^{***} & 0.268^{***} & \\ \hline (0.0765) & (0.0213) & \\ \hline 0.0144 & - & \\ \hline (0.0111) & - & \\ \hline 0.0475 & -0.0238 & \\ \hline (0.371) & (0.206) & \\ \hline -3.134^{***} & -2.177^{***} & \\ \hline (0.850) & (0.263) & \\ \hline 6591 & 6591 & \\ \hline 0.472 & 0.433 & \\ 120.9 & 87.55 & \\ \end{array}$

Table: Historical Capitals and Development

Standard errors in parentheses

 $^{+}$ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001

This table is part of the Table 2 in Pierskalla, Schultz, Wibbels, et al. 2017 paper.

To know how you get those numbers and stars, you need to know:

- 1 Derivatives
- System equations, matrix Algebra

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Operation of the observation of the observation
- 4 Random variables
- 6 Hypothesis testing

Example 1: Pierskalla, Schultz, Wibbels, et al. 2017

			_
	(1)	(2)	_
	log(Lights)	log(Lights)	_
LHCE $\delta = 5\%$	2.062***	1.956***	
	(0.570)	(0.346)	
			-
Current Capital Distance	0.0420	-0.146	
	(0.138)	(0.102)	(
log(Population)	0.279***	0.268***	1
,	(0.0765)	(0.0213)	
Absolute Latitude	0.0144	-	
	(0.0111)	-	
Ave Precipitation	0.0475	-0.0238	
	(0.371)	(0.206)	
	()		
Constant	-3.134***	-2.177***	
	(0.850)	(0.263)	
Observations	6591	6591	
Adjusted R ²	0.472	0.433	
F	120.9	87.55	

Table: Historical Capitals and Development

Standard errors in parentheses

 $^{+}$ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001

This table is part of the Table 2 in Pierskalla, Schultz, Wibbels, et al. 2017 paper.

To know how you calculate standard errors in parentheses, you need to know:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Derivatives
- 2 Matrix Algebra
- 3 Probability theory
- 4 Statistical inference

Example 1: Pierskalla, Schultz, Wibbels, et al. 2017

	(1)	(2)	
	log(Lights)	log(Lights)	
LHCE $\delta = 5\%$	2.062***	1.956***	
	(0.570)	(0.346)	
Current Capital Distance	0.0420	-0.146	
	(0.138)	(0.102)	
log(Population)	0 270***	0.268***	Т
log(1 opulation)	(0.0765)	(0.0213)	•
	(0.0705)	(0.0213)	v
Absolute Latitude	0.0144	-	
	(0.0111)	-	
Avg Precipitation	0.0475	-0.0238	
, the receptorion	(0.371)	(0.206)	
	(0.511)	(0.200)	
Constant	-3.134***	-2.177***	
	(0.850)	(0.263)	
Observations	6591	6591	
Adjusted R ²	0.472	0.433	
F	120.9	87.55	

Table: Historical Capitals and Development

To know why they need to add other variables, you need to know:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1 Idea of causal inference
- **2** Confounding variables

Standard errors in parentheses

⁺ p < 0.10, ⁺ p < 0.05, ^{**} p < 0.01, ^{***} p < 0.001</p>

This table is part of the Table 2 in Pierskalla, Schultz, Wibbels, et al. 2017 paper.

Example2: Political Economy

Figure: Corruption and GDP growth

(日) (四) (日) (日) (日)

Example3: Conflict

Source: Daniela Donno, et al. Not All Elections Are Created Equal: Election Quality and Civil Conflict. The Journal of Politics 2022 84:134-147. DOI: 10.1086/714778

Example4: Method

$$\hat{\boldsymbol{\alpha}}_{\lambda} = \operatorname*{argmax}_{\boldsymbol{\alpha}} \ -\frac{1}{2\sigma^2} \left[\sum_{i=1}^{N} (y_i - \boldsymbol{k}_i^{\mathsf{T}} \boldsymbol{\alpha})^2 + \lambda \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{K} \boldsymbol{\alpha} \right]; \quad \hat{\boldsymbol{\alpha}}_{\lambda} = (\boldsymbol{K} + \lambda \boldsymbol{I})^{-1}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Source: Qing Chang and Max Goplerud, Generalized Kernel Regularized Least Squares, forthcoming Political Analysis.

Assignments and Exams

• Assignment:

- Weekly assignment starts from week 2
- Math exercises.
- Homework due before class
- Answers will be provided
- Better written in Latex or Word, but scanned PDF also acceptable
- Exams:
 - Middle term exam, 10/03 (then enjoy the spring break!)
 - Final, 12/05
- Office Hour/Recitation: every Friday after noon, Time: TBD

Grades

- 10 assignments with 5% each (50%)
- 2 exams with 20% each (40%)
- 10% participation.
- Letter grade: (93-100: A, 90-92: A-, 87-89: B+, 83-86: B, 80-82: B-, etc.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

However, don't care too much on the numerical grades. This course isn't about grades (it's about learning)

Requirements

- All slides will be online.
- Textbook:
 - Moore, Will H. and David A. Siegel. 2013. A Mathematics Course for Political & Social Research. Princeton University Press. (short as MS)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Software:
 - R
 - Rstudio

Course Website

• https://canvas.pitt.edu/ for uploading your assignments.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• https://qingcchang.com/courses/ps2010/ for course materials and assignments.

Questions

Any questions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Recitation

Let's take a vote!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで