PS 2010: 2. Derivative

Qing Chang

Department of Political Science University of Pittsburgh

Fall 2023

Kロトメ部トメミトメミト ミニのQC

- Recitation time: Friday, 8:30-9:45 at 4801
- [Extra Material \(click me\)](https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(Apex))
- The first Homework Assignment is out. Due: Sep 8th, 8:59:59am

KO K K Ø K K E K K E K V K K K K K K K K K

Agenda

- Motivation
- Tangent Line
- Limit
- Rules of Differentiation
- Partial and Total Derivative

• Optimization

Motivation

• Political scientist interested in marginal effect of...

- unemployment rate on voter turnout
- economic performance on government trust
- ethnic diversity on conflict
- return to interest groups lobbying for a judicial nomination
- We also want to know
	- decision to join collective actions
	- best defense and offense strategies during conflicts
	- optimal sentencing length to minimize repeat offenses

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

• Derivatives, differentiation, and optimization provide analytical tools

Definition: A tangent line to the function $f(x)$ at the point $x = a$ is a line that just touches the graph of the function at the point in question and is "parallel" (in some way) to the graph at that point.

KORKARYKERKER POLO

Two Key Words:

- Just touches the graph
- For a given value on x

Tangent Lines

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

• However, the line in the right graph is a secant line.

Calculate Slope

• We need to know how to calculate the slope of a line:

$$
m=\frac{f(x_2)-f(x_1)}{x_2-x_1}=\frac{y_2-y_1}{x_2-x_1}
$$

• Example: $f(x) = 3x$, $x1 = 1$, $x2 = 2$

$$
m = \frac{f(2) - f(1)}{2 - 1}
$$

\n
$$
m = \frac{6 - 3}{2 - 1}
$$

\n
$$
m = 3
$$

Find Tangent Line

- $f(x)=15-x^2$, at $x=1$
- Logic: to find a line, we need to find at least two points on the line or we know the slope of the line.
- We already have one point $x = 1 \Rightarrow (1, 14)$
- So the next job is to find the slope, then we can define a line

Step 1

Let use point when $x = 4$, that is $y = -1$

It is a secant line, not tangent. So let's decrease to $x = 3$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Continue Step 1

When $x = 3$, that is $y = 6$, we draw the line again

Pretty close but not good enough, let's try $x = 2$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Continue Step 1

When $x = 2$, that is $y = 11$, we draw the line again

Pretty close but not good enough, let's try $x = 1.5$

イロト イ母 トイミト イミト ニヨー りんぺ

Continue Step 1

When $x = 1.5$, that is $y = 12.75$

Pretty close but not good enough, let's try $x = 1.5$

イロト イ母 トイミト イミト ニヨー りんぺ

Pattern: when x approaches to 1, the secant lines also approach to the tangent line.

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Final Step

- If so, let $x = 1.001$, then $y = 13.998$
- Then, we have two point $(1, 14)$, and $(1.001, 13.998)$
- We can get slope of the secant line, which is very very very close to the slope of tangent line

$$
m=\frac{13.998-14}{1.001-1}=\frac{-0.002}{0.001}=-2
$$

• Finally, we have slope $= -2$ and a point $(1, 14)$, we can define:

$$
-2 = \frac{f(x) - 14}{x - 1}
$$

$$
-2(x - 1) = f(x) - 14
$$

$$
-2x + 2 = f(x) - 14
$$

$$
f(x) = -2x + 16
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Summary

- Another example [here](https://www.geogebra.org/m/sVCRDDmA)
- In all examples, we approach the point from one direction. Results are the same when approach from both left and right.
- Remember: they are tangent lines at given points
- The slope of the tangent reflect the instantaneous rate of change at a point.

Limit

- When we choose x value (e.g $x = 1.001$) that approach to certain value (e.g $x = 1$)
- And we plug in this value ($x = 1.001$) to function and get the output
- If we do this from both side, that is $x = 1.001$ and $x = 0.999$, and get function outputs
- Then, this is actually taking the limit of a function at a point.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Definition: We say that the limit of $f(x)$ is L as x approaches point h and write this as:

$$
\lim_{x\to h}f(x)=L
$$

provided we can make $f(x)$ as close to L as we want for all x sufficiently close to h, from both sides, without actually letting x be h.

• This is not precise definition of a limit, but it is enough for our class.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Examples

- $\lim_{x\to 2} x + 4$
- $\lim_{x\to 2} x^2$
- $\lim_{x\to 1} \frac{x^2-3x+5}{x-2}$ x−2

KO K K Ø K K E K K E K V K K K K K K K K K

Notice: Limits are asking what the function is doing around $x = h$, we are not concerned with what the function is actually doing at x $= h.$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

•
$$
\lim_{x \to 2} \frac{8 - x^3}{x^2 - 4}
$$

\n• $f(x) = \begin{cases} x^2 & : x < 2 \\ (x - 2)^2 & : x \ge 2 \end{cases}$

K ロ > K 레 > K 로 > K 로 > - 로 - K 9 Q O

Properties of Limits

- $\lim_{x\to h}(f(x)+g(x)) = \lim_{x\to h} f(x) + \lim_{x\to h} g(x)$
- $\lim_{x\to b} (f(x) g(x)) = \lim_{x\to b} f(x) \lim_{x\to b} g(x)$
- $\lim_{x\to b} (f(x) * g(x)) = \lim_{x\to b} f(x) * \lim_{x\to b} g(x)$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

•
$$
\lim_{x \to h} \frac{f(x)}{g(x)} = \frac{\lim_{x \to h} f(x)}{\lim_{x \to h} g(x)}
$$

Derivative

- Definition: The instantaneous rate of change of a function (also means the slope of tangent line) at a given x.
- Formally, The derivative of $f(x)$ with respect to x is the function $f'(x)$ and is defined as,

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

• We also write it as: $\frac{d}{dx} f(x)$ or $\frac{dy}{dx}$

Example

- $f(x) = 3 14x^2$
	- Is the function increasing or decreasing when $x = 1$
	- Is the function increasing or decreasing when $x = -1$

• Determine $f'(0)$ for $f(x) = |x|$

Differentiation

- A function $f(x)$ is called differentiable at $x = a$ if $f'(a)$ exists
- $f(x)$ is is called differentiable on an interval if the derivative exists for each point in that interval.
- Discontinuity at a point implies no limit at that point, which further implies not differentiable at that point.

- The derivative of a constant is zero: If $f(x) = c$, then $f'(x) = 0$
- The power rule: If $f(x) = x^n$, then $f'(x) = nx^{n-1}$

KO K K Ø K K E K K E K V K K K K K K K K K

• Examples:

•
$$
f(x) = 2x^6 + 7x^{-6}
$$

•
$$
f(x) = \sqrt{x} + 9\sqrt[3]{x^7} - \frac{2}{\sqrt[5]{x^2}}
$$

- Product Rule: If the two functions $f(x)$ and $g(x)$ are differentiable, then the product is differentiable and, $\frac{d}{dx}[f(x)g(x)] = g(x)\frac{d}{dx}f(x) + f(x)\frac{d}{dx}g(x)$
- Quotient Rule: If the two functions $f(x)$ and $g(x)$ are differentiable, then the quotient is differentiable and,

$$
\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\frac{d}{dx}f(x)-f(x)\frac{d}{dx}g(x)}{g(x)^2}
$$

KORKAR KERKER SAGA

• Examples:

•
$$
f(x) = (6x^3 - x) (10 - 20x)
$$

\n• $f(x) = \frac{3x+9}{2-x}$

• Derivatives Of Exponential and Logarithm Functions:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

•
$$
f(x) = e^x
$$
 then, $f'(x) = e^x$

•
$$
f(x) = a^x
$$
 then, $f'(x) = a^x \ln(a)$

•
$$
f(x) = ln(x)
$$
 then, $f'(x) = \frac{1}{x}$

•
$$
f(x) = log_a(x)
$$
 then, $f'(x) = \frac{1}{x ln(a)}$

• Examples:

\n- $$
f(x) = 4^x - 5 \log_9 x
$$
\n- $f(x) = 3e^x + 10x^3 \ln x$
\n

• Chain Rule: If two functions $f(x)$ and $g(x)$ are both differentiable, then

$$
[f(g(x))]^{'} = f^{'}(g(x))g^{'}(x)
$$

KORKARYKERKER POLO

- Or If we have $y = f(u)$ and $u = g(x)$, then $\frac{dy}{dx} = \frac{dy}{du}$ du du dx
- Examples:
	- $f(x) = e^{x^4 3x^2 + 9}$ • $f(x) = \ln(x^{-4} + x^4)$

Partial Derivative

• A partial derivative is the derivative with respect to one of the variables

KO K K Ø K K E K K E K V K K K K K K K K K

• Example: $f(x, y, z) = x^2 + xy + 2yz$

Summary of Rules of Differentiation

Table 6.1: List of Rules of Differentiation

Interpretation of First Derivatives

First derivative, $f'(x)$

- Slope of a tangent line
- Also provide you the instantaneous rate of change
- Implies a function is increasing or decreasing, and by how much it is increasing or decreasing

• A fancier term: marginal effect!

Example

$$
f(x)=3x^3-6x^2+2x
$$

•
$$
f'(x) = 9x^2 - 12x + 2
$$

- So the instantaneous rate of change when $x = 0$ is 2
- This also means the function is **increasing** at that point
- So the instantaneous rate of change when $x = 1$ is -1
- This also means the function is **decreasing** at that point

Critical Point

• Definition: We say that $x = c$ is a critical point of the function $f(x)$ if $f(c)$ exists and if either of the following are true.

$$
f'(c) = 0 \text{ or } f'(c) \text{ doesn't exist}
$$

• Critical points are important because local extrema occur at critical point.

Example

$$
f(x)=x^3-3x^2+7
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

\n- $$
f'(x) = 3x^2 - 6x
$$
\n- $f'(x) = 0 \Rightarrow x^* = 0 \text{ or } x^* = 2$
\n

• Let's plot it

• From the plot, we know A and B are local maxima and local minima

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

- However, we can not plot the function every time.
- We need the second derivative to determine

Second Derivative

Second derivative, $f''(x)$

- The derivative of the derivative of a function
- Change in slope
- Implies first derivative is increasing or decreasing

Second Derivative Test

• After knowing the $f'(x)$, take the derivative again and find $f''(x)$

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

- Substitute the critical point x^* into $f''(x)$ • If $f''(x^*) < 0$, $f(x)$ has a local maximum at x^* • If $f''(x^*) > 0$, $f(x)$ has a local minimum at x^*
- Repeat the above steps for all critical points.

Example

$$
f(x)=x^3-3x^2+7
$$

KOKK@KKEKKEK E 1990

\n- $$
f'(x) = 3x^2 - 6x
$$
\n- $f'(x) = 0 \Rightarrow x^* = 0 \text{ or } x^* = 2$
\n- $f''(x) = 6x - 6$
\n

•
$$
f''(0) = -6 \Rightarrow
$$
 local maximum

•
$$
f''(2) = 6 \Rightarrow
$$
 local minimum

Why Second Derivative

- $f''(x)$ tell us whether function is concave or convex at certain points
- $\bullet\,\, f^{''}(x)< 0$ means concave near \times
- $\bullet\ f^{''}(x)>0$ means convex near x
- So, when $f''(x) < 0$ at critical point \Rightarrow local maximum
- When $f''(x) > 0$ at critical point \Rightarrow local minimum

Global Extrema

- The above procedures find the local extrema
- To find global extrema, we also need to look at the boundaries of the domain.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Global Extrema

- The above procedures find the local extrema
- To find global extrema, we also need to look at the boundaries of the domain.
- For example, look at D and E where $x = -3$ and 3
- Check both critical points and domain boundaries for global extrema

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Summary

To find local/global extrema, you need

- Find $f'(x)$
- Set $f'(x) = 0$ and solve for all critical points x^*
- Find $f''(x)$
- For each critical point, substitute it into $f''(x)$
	- If $f''(x^*) < 0$, $f(x)$ has a local maximum at x^*
	- If $f''(x^*) > 0$, $f(x)$ has a local minimum at $x*$
	- $f''(x^*) = 0$ is also possible, but too complicated for this class.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

- Substitute each critical points into $f(x)$ to find the function's value
- Substitute the lower and upper bounds of the domain into $f(x)$ to find the function's values
- The smallest value is the global minimum and the largest value is global maximum.