PS 2010: 3. Integrals

Qing Chang

Department of Political Science University of Pittsburgh

Fall 2023

- Homework 1 Due today
- Homework 2 is out
 Due Sep 19th 8:59:59am
- For next week, read 9 and skim 10

Today's Agenda

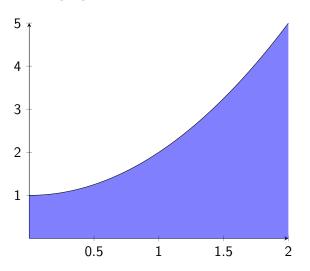
- Why matters
- Riemann Sum
- Indefinite Integral
- Definite Integral

Why We Need to Learn Integrals

- Calculate expected utility in theoretical models, such as voting and conflicts
- Compute probabilities, expected values, and variances associated with distributions
- Calculate likelihood functions and derive maximum likelihood estimators

Area Problem

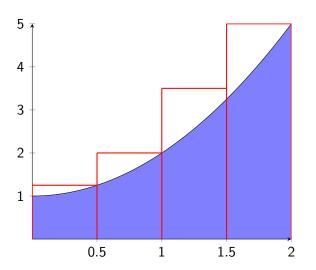
Determine the area of the blue region between the function: $f(x) = x^2 + 1$ on [0,2] and the x-axis.



Solution

- One way is to divide the blue region into small rectangles.
- First, decide how many rectangles, e.g. 4
- Second, this means x-asix equally divided to four intervals.
- $\Delta x = \frac{\text{Upper bond-Lower bond}}{n} = \frac{2-0}{4} = 0.5$

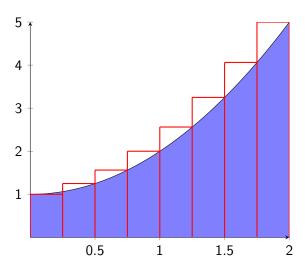
First Try



- Use the function value from right end point as height
- Calculate the each area and sum them up
- $\Delta * f(0.5) + \Delta * f(1) + \Delta * f(1.5) + \Delta * f(2)$

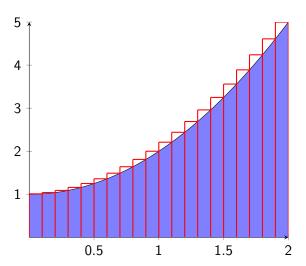
Use Large n

Let's make n = 8



A Better Approximation

Let's make n = 20



Riemann Sum

- With $\Delta x \to 0$ (n goes to larger and larger)
- The summation of rectangles area approximate to the area under the curve
- Riemann Sum:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x$$

When n goes to infinity we will get the exact area under the curve.

• The above can be also written as:

$$A = \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i^*) \Delta x$$

Indefinite Integral

- Suppose we have a function F(x), and it is has derivative F'(x) = f(x)
- Then the F(x) is called the anti-derivative of f(x)
- The most general anti-derivative of f(x) is called an indefinite integral and denoted:

$$\int f(x) dx = F(x) + C$$
, where C is an arbitrary number

• \int called integral symbol, f(x) is integrand

Example 1

$$\int x^4 + 3x - 9dx$$

- The anti-derivative of x^4 is $\frac{1}{5}x^5$
- The anti-derivative of 3x is $\frac{3}{2}x^2$
- The anti-derivative of 9 is 9x
- Therefore, the result is $\frac{1}{5}x^5 + \frac{3}{2}x^2 9x + C$
- Don't forget the constant number C

Rules of Indefinite Integral 1

- $\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$
- $\int (f(x) g(x))dx = \int f(x)dx \int g(x)dx$
- $\int af(x)dx = a \int f(x)d(x)$

Rules of Indefinite Integral 2

Remember, indefinite integral is just the reverse of the derivative. Therefore, for each derivative rule, we have integral rule.

- Integral of the constant: $\int kdx = kx + C$, C and k are all constant
- Integral of the power: $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$
- Example:
 - $\int 5x^3 10x^{-6} + 4dx$
 - $\int x^8 + x^{-8} dx$

Rules of Indefinite Integral 3

- Integral of exponential: $\int e^x dx = e^x + C$
- Integral of logarithm: $\int a^x dx = \frac{a^x}{\ln a} + C$
- Integral of logarithm: $\int \frac{1}{x} dx = \int x^{-1} dx = \ln |x| + C$
- Examples:
 - $\int 4x^3 9 + 7e^x$
 - $\int_{0}^{\infty} 3^{x} + \frac{1}{6x}$

Integration by Substitution

If function F and g(x) is differentiable, and we have F' = f, then

$$\int f(g(x))g'(x)dx = \int f(u)du = F(g(x)) + C$$

Where u = g(x).

- $\int 3(8x-1)e^{4x^2-x}dx$
- $\int \frac{x}{\sqrt{1-4x^2}} dx$

Integration by Parts

- We know product rule: (fg)' = f'g + fg'
- We take integral on both side: $\int (fg)' dx = \int (f'g + fg') dx$
- Then, $fg = \int f'gdx + \int fg'dx$
- Let's further let f(x) = u, and g(x) = v
- We will have $f'(x) = \frac{du}{dx} \Rightarrow du = f'(x)dx$
- Do the same: $g'(x) = \frac{dv}{dx} \Rightarrow dv = g'(x)dx$
- We get: $uv = \int vdu + \int udv$

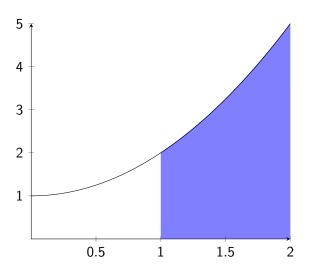
Integration by Parts:

$$\int v du = uv - \int u dv$$
 or $\int u dv = uv - \int v du$

Examples

- Rule of thumb: order for choosing u: 1) log function, 2) power function, 3) exponential function.
- $\int xe^{6x}dx$
- $\int x \ln x dx$

Area Problem Again



Area of blue region = Area under the curve - Area of the white region.

Definite Integral

• **Definite Integral:** If f(x) is continuous on interval [a, b], we divide the interval to n subintervals of equal width, Δx , and from each interval choose a point x^* , then the integral of f(x) from a and b is:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

 It is still an area problem, which sum over all small rectangle areas. The difference is this time we look at area within an interval

Fundamental Theorem of Calculus

If f(x) is continuous on [a, b], and F(x) is the anti-derivative for f(x). Then

$$\int_{a}^{b} f(x) dx = F(x)|_{a}^{b} = F(b) - F(a)$$

- $\int_0^2 x^2 + 1 dx$
- $\int_{-3}^{1} 6x^2 5x + 2dx$

More Examples

- Integral by substitution
 - $\int_{-2}^{0} 2x^2 \sqrt{1-4x^3} dx$

•
$$\int_{-2}^{-6} \frac{4}{(1+2x)^3} - \frac{5}{1+2x} dx$$

- Integral by parts
 - $\int_0^1 x^2 e^x dx$

Resource

Integral Calculator